MODEL OF DISPERSION TAKING INTO ACCOUNT THE
DIFFERENCE IN VISCOSITIES OF THE MEDIA

V.‘ I. Maron UDC 532.529.5

A one-dimensional model of admixture dispersion in a turbulent stream in a tube is proposed,
taking into account the difference in the viscosities of the fluids being mixed.

Let us consider the combined flow of two mutually soluble fluids during which the formation of a
mixing region separating the homogeneous stream components occurs. The distribution of the mean con-
centration over the tube cross section in the mixing region can be described by a one-dimensional equation
of the heat conduction type with some effective coefficient
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As tests show, this coefficient differs from the molecular and turbulent transport coefficients. Its dimen-
sionless value depends on a number of parameters such as the Reynolds number calculated for one of the
fluids, the roughness, the ratio between the fluid densities and viscosities, as well as the concentration,
concentration gradients, etc. These dependences can be established by using either tests or on the basis
of a theoretical solution of the three-dimensional mixing problem in a stream in a tube.

From this viewpoint, a one-dimensional model of dispersion with an effective coefficient dependent
only on the Reynolds number is constructed theoretically in the known paper of Taylor [1]. This latter
circumstance is due to the fact that Taylor took the density and viscosity of the fluids being mixed as iden-
tical in constructing the model.

If these assumptions are rejected, then the one-dimensional model of dispersion is more complex
since, in this case, the effective coefficient will depend on the concentration distribution in the mixture
region. Let us estimate the influence of the difference between the fluid viscosities on the quantity of
mixture being formed and on the concentration distribution. To this end, let us consider the fluids being
mixed in the stream in the tube to have identical densities but distinct viscosities. Such an assumption
corresponds well enough to the case of the motion of two diverse petroleum products whose densities differ
to a considerably lesser extent than do the viscosities.

Let us consider the concentration distribution for times much greater than the diffusion d?/D;, when
the length of the mixing region becomes much greater than the tube diameter. Because of the radial dif-
fusion substantial inhomogeneities in the concentration in the tube cross section vanish for such times and
only insignificant deviations of the values of the concentration from the mean values in the tube cross sec-
tion will exist in the mixing region (these deviations are due to the inhomogeneous convective transfer be-
cause of the velocity profile).

For an observer moving at the mean stream velocity in such a mixing region, the concentration pro-
file hardly varies with time. Hence, the local time derivative of the concentration can be discarded in the
equation describing the concentration distribution in a moving coordinate system. We have
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The derivative c}'( is replaced by 6;§ in the left side of this equation because of the smallness of the
radial inhomogeneities. The solution of (2) which satisfies the condition that streams of material on the
inner tube surface are zero is
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The function cy(t, x) can be determined in terms of the distribution of the mean stream concentration. We
have ,
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The effective coefficient of turbulent diffusion [2] can be found by using the distribution (3). We have
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Two unknown functions, the average stream velocity and the coefficient of turbulent diffusion, are in this
formula. Material and momentum transfer occur with almost equal intensity in a turbulent flow, hence,
we assume the transfer coefficients Dt and v identical. Then the quantity D¢ in a stream in a tube can be
calculated by means of the following
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To determine the velocity profile, let us take a two-layer scheme for a turbulent stream in a smooth
tube, a laminar layer near the inner tube surface and a turbulent layer in which the stream molecular vis-
cosity plays no substantial role in the formation of the velocity profile. The whole influence of the molecu-
lar viscosity on the velocity distribution and other stream parameters is localized in the laminar layer in
this scheme.

The equation to determine the velocity in a laminar layer is
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The equation differs from the analogous equation for a homogeneous stream in that the viscosity of an inho-
mogeneous fluid is a variable in it, dependent on the concentration distribution. Hence, it is impossible to
solve (7) without knowing the concentration distribution which, in turn, depends on the velocity of the in-
homogeneous stream.

Let us expand the function of the concentration c(t, x, y) in 2 Taylor series in y in the neighborhood
of the point y = 0:
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By using (3), let us estimate the magnitude of the second term in this expansion within the limits of the
laminar layer
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It follows from this estimate that the value of the second member depends on the relaticaship between the
characteristic time intervals associated with the convective transfer and the molecular diffusion in the
laminar layer.
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Let us henceforth consider the time interval within which the concentration changes essential because
of convective transfer to be an order of magnitude greater than the diffusion constant (/7o > 1). In this
case the concentration in the laminar layer can be taken approximately equal to c,it, x).

Taking this approximation, we determine the velocity profile in the laminar layer
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" To determine the velocity profile in the core of the turbulent stream, let us make assumptions which
result in a logarithmic velocity profile. Let us assume the friction stress in the turbulent layer to be con-
stant and equal to the friction stress on the inner tube surface. Let us define the turbulent stream viscosity
by the Prandtl formula by considering t = ny:
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Under the assumptions made, the dimensionless velocity profile is
@ = 9.5 In —- + @, >N, az)
This profile differs from the analogous velocity profile for a homogeneous stream in a tube by the fact that
the parameters @, 14 and ¢, are functions of the variables 7 and £ since they depend on the mean concen-
tration distributions. The expansion for the fluid velocity profile in the mixing region is used to calculate
the quantities K% and c; in the turbulent stream core. We have
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In contrast to the analogous Taylor formula for Kx, the quantity o and therefore, the effective coef-
ficient of diffusion Kx evaluated by means of (13), depend on the concentration distribution.

Using (12), let us evaluate the mean stream velocity and obtain an equation to determine « as a func-
tion of 6 (T, &):
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The Reynolds number in this formula is evaluated in terms of the viscosity v (6)
Re = (vl/v (6, vy, vy))Re,. (15)
We evaluate the kinematic viscosity V(@) by means of the formula [3]
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Taking these last two equations into account, (14) can be rewritten as
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Now (14) for a fixed value of 6, agrees with the theoretical Prandtl formula to calculate the hydraulic drag
of a homogeneous stream whose viscosity equals the viscosity of the mixture for the selected value of 6.
Within a broad range of Reynolds numbers, the dependence of @ on Re, determined by the Prandtl formula,
can be approximated by the Colebrook function
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If it is assumed that Re = (;/V)Re;, this same dependence will approximate the relation between a and Re

determination by (14) for each fixed value of 6.

In constrast to (14), the dependence (18) is explicit and its use will simplify the dispersion model sub-
stantially.

Using (18), let us write the explicit concentration dependence of the effective coefficient of diffusion
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In order to compare the concentration distributions in the mixing regions evaluated for »; < 1 and
vy > 1, let us find the solution to (1) for the problem of successive repumping of two fluids, when one moves
after the other.
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' Fig. 1. Concentration distribution 8 (z) for the fluids
following in a different order. (The solid curve cor-
responds to the parameters v,/Vy = 0.435, Rey = 6+ 10,
and the dashed curve to v,/vy = 23, Re; = 1.3 10%).

The limit conditions for this problem are

80, ) =0, 0(x, —o0)==1, B(1, - 00) =0. 20)
The problem admits of a self-similar solution dependent on one variable z = £/2VI'T, The desired solution
satisfies the following equation and boundary conditions:

o _ 4 [cp(e) fﬁ], B(—o00) == 1, B( o0) =0,

dz

® = (1—bln(®+vy* (1 — o))", (21)
\ i

1
b=31ln—R
(“ 7 Re)

To solve the problem, let us use the method described in [5]. ILet us introduce the new function f = 1—8
and the independent variable zx = z + Zge Let us rewrite (21) thus
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Let us transfer the limit condition for z = — to the point z = —z; Then the 1i"mit conditions for the func-
tion f(zx) become '
f(0) =0, f(} o0) =1, - (23)
Let us introduce the linear transformation
fo Amih, 7, = Amz,
and let us give still another boundary condition
o _ 4, (24)

dz,
Let us take the exponents &4 and @, in such a way that (22) for the function h(z,) and condition (24) would be
independent of A. To do this we set ay = 1, oy = 0 and introduce a new constant 6 = YA. Then we solve the
Cauchy problem with the following limit conditions
dh (0)
dz,

h{(0) =0, = L. ‘ (25)

for (22) with the unknown function h(z;) for some fixed value of the parameter 6. For the solution found
from the condition at z; = » we determine the constant A = (h(~))-! and we calculate the desired function
6 = 1—(h(°°))‘1h(z1—zo). The quantity A depends on the parameter 6, which we variate in such a way as to
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find the solution of the initial problem for a given value of ¥). Computations have shown that the quantity

2z, should be taken equal to 2.5. For zj> 2.5 the solutions 6(z) are practically identical. Represented
graphically in the figure are solutions of the problem (21) for the following set of parameters: v, = 23, Re,
= 1.3-10% and v; = 0.435, Rey = 6+ 10%. The change in the concentration distribution as a function of the
order in which the fluids follow can be traced for identical pipeline productivity by means of these graphical
solutions. (The subscript 1 refers to the parameters of the fluid moving from behind. )

The quantity of one fluid incident on the other can be estimated by means of the magnitudes of the
area over the curve 0(z) in the region z < 0 and under this curve for z > 0. The sum of these areas charac-
terizes the total quantity of fluid being mixed. In the case under consideration this sum is 10% greater if
the more viscous fluid moves in front. It hence follows that the quantity of mixture being formed depends
on the order in which the fluids follow and it will be greater when the more viscous fluid moves in front,

A model of mixing fluids with different viscosities was considered above in which it is assumed that

the equalization of the concentrations occurs instantaneously (Tk > Tg). Another limit case would be of
.interest, when T) << Tq and the concentration of the fluid moving in front in the laminar layer does not suc~
ceed in being changed during the passage of the mixture through the section selected. In this case, we
should set @ = 0 in (19) for the calculation of the effective diffusion coefficient. A linear equation is hence
obtained for the concentration distribution. If the quantity of admixture is compared as a function the order
of succession within the framework of this model then it turns out that the total quantity of the admixture

in each of the fluids is 15% greater for the same values of the parameters v, and Re, if the less viscous fluid
moves from behind than for a reverse order of succession when the less viscous fluid moves in front.

Therefore, on the basis of the one-dimensional diffusion model taking account of the difference in the
fluid viscosities, we have succeeded in showing in what way the order of fluid succession influences the
quantity of mixture being formed and the concentration distribution. Qualitatively similar results have been
obtained in [4] in which a model taking account of the difference in viscosities has been constructed on the
basis of tests.

NOTATION
] is the mean concentration over the tube cross section;
T =Ut/a;
t is the time;
U is the mean stream velocity;
t=x/a is the distance in a moving coordinate system;
a is a tube radius; " '
Ky = K/U d; L
K is the effective coefficient of diffusion;
Ki and v§ are the fluid viscosities;
Dy is the typical value of the coefficient of turbulent diffusion;
u(r) is the average stream velocity;
T is the distance along the radius;
£=D+Dg;
D and D¢ are the coefficients of molecular and turbulent diffusion;
c is the average concentration;
cq is the value of the concentration on the inner tube surface;
u* is the dynamic turbulent velocity;
y is the distance from the inner tube surface;
Vi is the laminar layer thickness;
v is the mixture viscosity;
Vi " is the turbulent viscosity;
£ =x/L;
L is the length of mixture region;
¢ =u/U; :
a =ux/U;
n = y/a;
@, is the dimensionless velocity on the laminar layer boundary;
Re1 = Ud/ Vys
Vo= va/Vy;
z=t/2VIT;
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¥+ = 1157 /usg
B = 11,5,
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